通过利用和适应到目前为止获得的知识,人类具有识别和区分他们不熟悉的实例的天生能力。重要的是,他们实现了这一目标,而不会在早期学习中恶化表现。受此启发,我们识别并制定了NCDWF的新的,务实的问题设置:新颖的类发现而无需忘记,哪个任务是机器学习模型从未标记的数据中逐步发现实例的新颖类别,同时在先前看到的类别上保持其性能。我们提出1)一种生成伪内表示的方法,该表示的代理(不再可用)标记的数据,从而减轻遗忘的遗忘,2)基于相互信息的正常化程序,可以增强对新型类别的无聊发现,而3)a 3)当测试数据包含所见类别和看不见的类别的实例时,简单的已知类标识符可以有助于广义推断。我们介绍了基于CIFAR-10,CIFAR-100和IMAGENET-1000的实验协议,以衡量知识保留和新型类发现之间的权衡。我们广泛的评估表明,现有的模型在确定新类别的同时灾难性地忘记了先前看到的类别,而我们的方法能够有效地在竞争目标之间平衡。我们希望我们的工作能够吸引对这个新确定的实用问题设定的进一步研究。
translated by 谷歌翻译
在测试时间适应(TTA)中,给定在某些源数据上培训的模型,目标是使其适应从不同分布的测试实例更好地预测。至关重要的是,TTA假设从目标分布到Finetune源模型,无法访问源数据或甚至从目标分布到任何其他标记/未标记的样本。在这项工作中,我们考虑TTA在更务实的设置中,我们称为SITA(单图像测试时间适应)。这里,在制作每个预测时,该模型只能访问给定的\ emph {单}测试实例,而不是实例的\ emph {批次}。通常在文献中被考虑。这是由逼真的情况激励,其中在按需时尚中需要推断,可能不会被延迟到“批量 - iFY”传入请求或者在没有范围的边缘设备(如移动电话中)发生推断批处理。 SITA的整个适应过程应在推理时间发生时非常快。为了解决这个问题,我们提出了一种新颖的AUGBN,用于仅需要转发传播的SITA设置。该方法可以为分类和分段任务的单个测试实例调整任何特征训练模型。 AUGBN估计仅使用具有标签保存的转换的一个前进通过的给定测试图像的看不见的测试分布的正常化统计。由于AUGBN不涉及任何反向传播,与其他最近的方法相比,它显着更快。据我们所知,这是仅使用单个测试图像解决此硬调整问题的第一个工作。尽管非常简单,但我们的框架能够在我们广泛的实验和消融研究中对目标实例上应用源模型来实现显着的性能增益。
translated by 谷歌翻译
Distributionally robust optimization (DRO) can improve the robustness and fairness of learning methods. In this paper, we devise stochastic algorithms for a class of DRO problems including group DRO, subpopulation fairness, and empirical conditional value at risk (CVaR) optimization. Our new algorithms achieve faster convergence rates than existing algorithms for multiple DRO settings. We also provide a new information-theoretic lower bound that implies our bounds are tight for group DRO. Empirically, too, our algorithms outperform known methods
translated by 谷歌翻译
Online Social Networks have embarked on the importance of connection strength measures which has a broad array of applications such as, analyzing diffusion behaviors, community detection, link predictions, recommender systems. Though there are some existing connection strength measures, the density that a connection shares with it's neighbors and the directionality aspect has not received much attention. In this paper, we have proposed an asymmetric edge similarity measure namely, Neighborhood Density-based Edge Similarity (NDES) which provides a fundamental support to derive the strength of connection. The time complexity of NDES is $O(nk^2)$. An application of NDES for community detection in social network is shown. We have considered a similarity based community detection technique and substituted its similarity measure with NDES. The performance of NDES is evaluated on several small real-world datasets in terms of the effectiveness in detecting communities and compared with three widely used similarity measures. Empirical results show NDES enables detecting comparatively better communities both in terms of accuracy and quality.
translated by 谷歌翻译
Community detection in Social Networks is associated with finding and grouping the most similar nodes inherent in the network. These similar nodes are identified by computing tie strength. Stronger ties indicates higher proximity shared by connected node pairs. This work is motivated by Granovetter's argument that suggests that strong ties lies within densely connected nodes and the theory that community cores in real-world networks are densely connected. In this paper, we have introduced a novel method called \emph{Disjoint Community detection using Cascades (DCC)} which demonstrates the effectiveness of a new local density based tie strength measure on detecting communities. Here, tie strength is utilized to decide the paths followed for propagating information. The idea is to crawl through the tuple information of cascades towards the community core guided by increasing tie strength. Considering the cascade generation step, a novel preferential membership method has been developed to assign community labels to unassigned nodes. The efficacy of $DCC$ has been analyzed based on quality and accuracy on several real-world datasets and baseline community detection algorithms.
translated by 谷歌翻译
Information diffusion in Online Social Networks is a new and crucial problem in social network analysis field and requires significant research attention. Efficient diffusion of information are of critical importance in diverse situations such as; pandemic prevention, advertising, marketing etc. Although several mathematical models have been developed till date, but previous works lacked systematic analysis and exploration of the influence of neighborhood for information diffusion. In this paper, we have proposed Common Neighborhood Strategy (CNS) algorithm for information diffusion that demonstrates the role of common neighborhood in information propagation throughout the network. The performance of CNS algorithm is evaluated on several real-world datasets in terms of diffusion speed and diffusion outspread and compared with several widely used information diffusion models. Empirical results show CNS algorithm enables better information diffusion both in terms of diffusion speed and diffusion outspread.
translated by 谷歌翻译
Nature-inspired optimization Algorithms (NIOAs) are nowadays a popular choice for community detection in social networks. Community detection problem in social network is treated as optimization problem, where the objective is to either maximize the connection within the community or minimize connections between the communities. To apply NIOAs, either of the two, or both objectives are explored. Since NIOAs mostly exploit randomness in their strategies, it is necessary to analyze their performance for specific applications. In this paper, NIOAs are analyzed on the community detection problem. A direct comparison approach is followed to perform pairwise comparison of NIOAs. The performance is measured in terms of five scores designed based on prasatul matrix and also with average isolability. Three widely used real-world social networks and four NIOAs are considered for analyzing the quality of communities generated by NIOAs.
translated by 谷歌翻译
The tropical cyclone formation process is one of the most complex natural phenomena which is governed by various atmospheric, oceanographic, and geographic factors that varies with time and space. Despite several years of research, accurately predicting tropical cyclone formation remains a challenging task. While the existing numerical models have inherent limitations, the machine learning models fail to capture the spatial and temporal dimensions of the causal factors behind TC formation. In this study, a deep learning model has been proposed that can forecast the formation of a tropical cyclone with a lead time of up to 60 hours with high accuracy. The model uses the high-resolution reanalysis data ERA5 (ECMWF reanalysis 5th generation), and best track data IBTrACS (International Best Track Archive for Climate Stewardship) to forecast tropical cyclone formation in six ocean basins of the world. For 60 hours lead time the models achieve an accuracy in the range of 86.9% - 92.9% across the six ocean basins. The model takes about 5-15 minutes of training time depending on the ocean basin, and the amount of data used and can predict within seconds, thereby making it suitable for real-life usage.
translated by 谷歌翻译
Fairness of machine learning (ML) software has become a major concern in the recent past. Although recent research on testing and improving fairness have demonstrated impact on real-world software, providing fairness guarantee in practice is still lacking. Certification of ML models is challenging because of the complex decision-making process of the models. In this paper, we proposed Fairify, an SMT-based approach to verify individual fairness property in neural network (NN) models. Individual fairness ensures that any two similar individuals get similar treatment irrespective of their protected attributes e.g., race, sex, age. Verifying this fairness property is hard because of the global checking and non-linear computation nodes in NN. We proposed sound approach to make individual fairness verification tractable for the developers. The key idea is that many neurons in the NN always remain inactive when a smaller part of the input domain is considered. So, Fairify leverages whitebox access to the models in production and then apply formal analysis based pruning. Our approach adopts input partitioning and then prunes the NN for each partition to provide fairness certification or counterexample. We leveraged interval arithmetic and activation heuristic of the neurons to perform the pruning as necessary. We evaluated Fairify on 25 real-world neural networks collected from four different sources, and demonstrated the effectiveness, scalability and performance over baseline and closely related work. Fairify is also configurable based on the domain and size of the NN. Our novel formulation of the problem can answer targeted verification queries with relaxations and counterexamples, which have practical implications.
translated by 谷歌翻译
Machine Learning (ML) software has been widely adopted in modern society, with reported fairness implications for minority groups based on race, sex, age, etc. Many recent works have proposed methods to measure and mitigate algorithmic bias in ML models. The existing approaches focus on single classifier-based ML models. However, real-world ML models are often composed of multiple independent or dependent learners in an ensemble (e.g., Random Forest), where the fairness composes in a non-trivial way. How does fairness compose in ensembles? What are the fairness impacts of the learners on the ultimate fairness of the ensemble? Can fair learners result in an unfair ensemble? Furthermore, studies have shown that hyperparameters influence the fairness of ML models. Ensemble hyperparameters are more complex since they affect how learners are combined in different categories of ensembles. Understanding the impact of ensemble hyperparameters on fairness will help programmers design fair ensembles. Today, we do not understand these fully for different ensemble algorithms. In this paper, we comprehensively study popular real-world ensembles: bagging, boosting, stacking and voting. We have developed a benchmark of 168 ensemble models collected from Kaggle on four popular fairness datasets. We use existing fairness metrics to understand the composition of fairness. Our results show that ensembles can be designed to be fairer without using mitigation techniques. We also identify the interplay between fairness composition and data characteristics to guide fair ensemble design. Finally, our benchmark can be leveraged for further research on fair ensembles. To the best of our knowledge, this is one of the first and largest studies on fairness composition in ensembles yet presented in the literature.
translated by 谷歌翻译